Design and Implementation of Fuzzy Policy Gradient Gait Learning Method for Walking Pattern Generation of Humanoid Robots
نویسندگان
چکیده
The design and implementation of Fuzzy Policy Gradient Learning (FPGL) method for humanoid robot is proposed in this paper. This paper not only introduces the phases of the humanoid robot walking, but also improves and parameterizes the gait pattern of the robot. FPGL is an integrated machine learning method based on Policy Gradient Reinforcement Learning (PGRL) and fuzzy logic concept in order to improve the efficiency and speed of gait learning computation. The result of the experiment shows that FPGL method can train the gait pattern from 9.26 mm/s walking speed to 162.27 mm/s within an hour. The training data of experiments also shows that this method could improve the efficiency of basic PGRL method up to 13%. The effect of arm movement to reduce the tilt of the trunk is also proved by the experimental results. All the results successfully demonstrate the feasibility and the flexibility of the proposed method.
منابع مشابه
A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملDynamic Control Algorithm for Biped Walking Based on Policy Gradient Fuzzy Reinforcement Learning
This paper presents a novel dynamic control approach to acquire biped walking of humanoid robots focussed on policy gradient reinforcement learning with fuzzy evaluative feedback . The proposed structure of controller involves two feedback loops: conventional computed torque controller including impact-force controller and reinforcement learning computed torque controller. Reinforcement learnin...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملOptimal Gait Generation in Biped Locomotion of Humanoid Robot to Improve Walking Speed
Humanoid robot is a type of robot that the overall appearance is based on that of the human body. Humanoid robots include a rich diversity of projects where perception, processing and action are embodied in a recognizably anthropomorphic form in order to emulate some subset of the physical, cognitive and social dimensions of the human body and experience. The research on humanoid robots spans f...
متن کاملHumanoid Gait Optimization Based on Human Data
Achieving a stable, human-like gait for humanoid robots is a challenging task. While a variety of techniques exist to generate stable walking patterns, only little attention has been paid to the resemblance to the human gait. Popular gaits, for example, apply the strategy to bend the knees and to swing the torso in the lateral direction in order to ensure stability by shifting the center of mas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012